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Application of liquid dynamics theory to the glass transition

Duane C. Wallace
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 29 June 1999!

In monatomic liquid dynamics theory, the system moves among a large number of intersecting nearly
harmonic valleys in the many-particle potential energy surface. The same potential surface underlies the
motion of atoms in the supercooled liquid. As temperature is decreased below the melting temperature, the
motion among the potential valleys will begin to freeze out, and the system will pass out of equilibrium. It is
therefore necessary to develop a nonequilibrium theory, based on the Hamiltonian motion. The motion is
separated into two distinct parts, and idealized as follows:~a! the vibrational motion within a single valley is
assumed to be purely harmonic, and remaining in equilibrium; and~b! the transit motion, which carries the
system from one valley to another, is assumed to be instantaneous, and energy and momentum conserving.
This idealized system is capable of exhibiting a glass transition behavior. An elementary model, incorporating
the idealized motion, is the independent atom model, originally developed to treat self diffusion in monatomic
liquids. For supercooled liquids, in the independent atom model, the vanishing of self diffusion at a finite
temperature implies the same property for the transit probability. The vanishing of the transit probability at a
finite temperature supports the view that transits are not merely thermally activated, but are controlled by
phase-space correlations. For supercooled liquid sodium, the transit probability has Vogel-Tamann-Fulcher
temperature dependence. The independent atom model is shown to be capable of exhibiting all the essential
glass transition properties, including rate dependence of the glass transition temperature, and both exponential
and nonexponential relaxation.@S1063-651X~99!01412-9#

PACS number~s!: 64.70.Pf, 61.20.Gy, 66.20.1d, 61.43.Dq
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I. INTRODUCTION

Liquid dynamics theory describes the motion of atoms
the liquid state. Over the years, the main problem in dev
oping this theory has been to understand the nature of
many-particle potential energy surface upon which the liq
atoms move. Early on, Frenkel@1,2# argued that atomic mo
tion consists mainly of vibrations about equilibrium pos
tions, while occasionally the equilibrium positions al
move. Stillinger and Weber@3–7# used the computer to find
inherent structures, which are local potential minima in
many-particle potential surface. LaViolette and Stump@8#
varied the interatomic potential and density, and found a
riety of structural symmetries. More recently, we argued t
the potential surface for a monatomic system is compose
a large number of intersecting nearly harmonic valleys, t
these are divided into the classes of random and symme
and the random valleys dominate the statistical mechanic
the liquid state because they are vastly most numerous
this basis we constructed a liquid dynamics Hamiltoni
evaluated the canonical partition function, and achiev
agreement between theory and experiment for the therm
namic properties of liquid metals@9,10#. In addition, from an
investigation of the intervalley motion of the system, liqu
dynamics theory has led to an independent atom mo
which gives a respectable account of the velocity autoco
lation function and self diffusion@11#.

When a liquid is cooled below its melting temperatu
and when it does not crystallize, the system is called a
percooled liquid. From our current understanding of the m
tion of atoms in the liquid, it is apparent that the same
scription, indeed the same Hamiltonian, also applies to
supercooled liquid. The purpose of this work is to make t
PRE 601063-651X/99/60~6!/7049~8!/$15.00
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application, to model the predicted behavior, and to comp
with experiment. We are interested in the supercooled liq
in general, and especially in the glass transition. The na
of materials in this regime is described in the reviews
Angell @12,13#, Stillinger @14#, and Ediger, Angell, and Na
gel @15#. We will not consider the tunneling-state effect
which are common to glasses at lower temperatures@16,17#.
Due to the current limited application of liquid dynamic
theory, our theoretical work is limited to monatomic sy
tems, with one extension to nonmolecular binary syste
Though laboratory measurements are scarce for these s
cooled liquids, computer simulations are providing mu
useful data. From the detailed descriptions of the proper
of glass forming materials@12–15#, we conclude that the
following characteristics must be exhibited by any meanin
ful theory of the glass transition.

~a! Upon cooling through the melting temperature, in t
absence of crystallization, there is no discontinuity in th
modynamic or transport properties.

~b! Upon further cooling, a temperature is reached wh
the system falls out of thermodynamic equilibrium, and th
glass transition temperature depends on the cooling rate

~c! At temperatures above the glass transition, the sh
viscosity exhibits a characteristic strong~apparently singu-
lar! temperature dependence.

~d! When the system is removed from equilibrium, abo
or below the glass transition temperature, it relaxes tow
equilibrium, and nonexponential relaxation is commonly o
served.

In Sec. II, the liquid dynamics Hamiltonian is applied
the supercooled liquid regime. It becomes apparent that
supercooled liquid will not be able to maintain equilibriu
as temperature is lowered, and that a general nonequilibr
7049 © 1999 The American Physical Society
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7050 PRE 60DUANE C. WALLACE
theory is needed. Based on the Hamiltonian, the outline
this theory is developed. In Sec. III, glass transition behav
of transport properties is accounted for by the independ
atom model, through the slowing down of intervalley trans
as temperature is lowered. In Sec. IV, glass transition beh
ior of the internal energy is accounted for by the sa
model, after removing the degeneracy of the potential ene
valleys, again through the same slowing down of interval
transits. Our conclusions are summarized in Sec. V, our m
conclusion being that the independent atom model expre
a realistic approximation to glass transition physics.

II. DYNAMICS OF THE SUPERCOOLED LIQUID

The classification of potential energy valleys as random
symmetric is an important step in clarifying the nature of t
many-particle potential energy surface@9#. The symmetric
valleys can be crystalline, microcrystalline, or just ha
some remnant of crystal symmetry among near neighbors
in the example of amorphous carbon, where nearly all ato
have four nearest neighbors in distorted tetrahedral arra
ments@18#. Because of the wide variety of possible symm
tries, the symmetric valleys have a wide range of shapes,
this wide range complicates the system Hamiltonian. In c
trast, the random valleys have only random near-neigh
symmetry, that is, they have no order parameter, and he
must all have the same shape~in the thermodynamic limit!.
Further, because of their randomness, the random va
must be of overwhelming numerical superiority, hence th
are the only valleys which need be included in the liqu
dynamics Hamiltonian. We have recently concluded
molecular-dynamics study which strongly confirms the
properties of the many-particle potential surface, for a pot
tial which accurately represents metallic sodium@19,20#.

The liquid dynamics classical statistical mechanics
been presented@9#. Here we present the quantum statistics,
enable the low temperature description. First conside
single random valley. The structural potentialF0 is the sys-
tem potential at the bottom of the valley. The normal mod
of oscillation around the valley bottom are labeledl
51,...,3N for an N-particle system, and normal model has
momentumpl , displacementql , and frequencyvl . Then
the quasiharmonic Hamiltonian for the system within th
random valley is

HH5F01(
l

F pl
2

2M
1

1

2
Mvl

2ql
2G , ~1!

whereM is the atomic mass. The complete liquid dynam
Hamiltonian is the sum of quasiharmonic Hamiltonians~1!
over all random valleys in the potential surface, plus corr
tions for the anharmonicity of each valley, plus correctio
for the boundary where valleys intersect. To evaluate
partition function, two observations are important. First, t
parametersF0 and$vl% are the same for every random va
ley, so we merely have to evaluate the quasiharmonic p
tion function for one valley, and multiply bywN, the total
number of random valleys. From a careful analysis of
entropy of melting for normal-melting elements, we ha
found the universal value lnw50.8 @9,21#. Second, the an
harmonic and boundary contributions are small, and can
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treated in perturbation theory. When the algebra is done,
Helmholtz free energy becomes@22#

F5F02NkT ln w1(
l

F1

2
\vl2kT ln~nl11!G1FA1FB ,

~2!

whereFA and FB respectively express the anharmonic a
boundary contributions. The corresponding internal ene
U, and entropyS are given by

U5F01(
l

\vlS nl1
1

2D1UA1UB , ~3!

S5Nk ln w1k(
l

@~nl11!ln~nl11!2nl ln nl#1SA1SB ,

~4!

wherenl is the boson occupation number,

nl5
1

e\vl /kT21
. ~5!

Finally, since in this paper we are only interested in prop
ties depending on the motion of the atoms, the electron
excitation contributions are neglected throughout~see, e.g.,
Refs.@9# and @22#!.

We are now ready to identify the limits of equilibrium
statistical mechanics for the problem at hand. First note,
partition function we have constructed isapproximate, be-
cause the system phase space has been limited to jus
random valleys in the many-particle potential surface. B
this limited phase space should be a good approximation,
only for the liquid, but also for the supercooled liquid, ev
though the supercooled liquid is metastable. Accordingly,
supercooled liquid equilibrium thermodynamic functions a
given by Eqs.~2!–~5!. Now a problem arises. The entrop
@Eq. ~4!# contains the constant termNk ln w, expressing that
the system visits the entire collection of random valleys. B
in reality, when the system is cooled from the liquid, at so
temperature its motion among the random valleys begin
freeze out, and then the valleys are no longer equally ac
sible, and the entropy is not defined. To treat the system
this regime, we have to abandon equilibrium statistical m
chanics, at least for the nonequilibrium degrees of freed
and return to the Hamiltonian-induced motion of the syste
as it moves among nonequilibrium states.

To proceed with this program, let us consider the syst
in any state, and separate the motion into two distinct pa
the motion within a single random valley, called the vibr
tional motion, and the motion from one valley to anoth
called a transit. To simplify the picture, we will idealize ea
type of motion, keeping only its essential physical charac

In the vibrational motion, we keep only the quasiha
monic part, and assume that the vibrational interactions~the
anharmonicity! are sufficient to maintain this quasiharmon
part in internal thermodynamic equilibrium. Under this co
dition, a temperature is defined, the vibrational free ene
remains physically meaningful, and can be written
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Fvib5F01(
l

F1

2
\vl2kT ln~nl11!G . ~6!

We have previously observed that transits are local,
each transit corresponds to a change in the equilibrium p
tions of only a small group of neighboring atoms@9,11#. For
the present let us assume that each transit is instantaneo
time, and conserves total energy and momentum among
transiting atoms. Then the transits make no contribution
the system energy, and their sole function is to move
system among the many available potential energy valle
This idealization provides for a simple resolution of the s
tem properties, as follows.

~a! Since the energy is all vibrational, the total energy
just the quasiharmonic contribution from Eq.~6!,

U5Uvib5F01(
l

\vlS nl1
1

2D . ~7!

The system temperature is defined through the equilibr
distributionnl , given by Eq.~5!.

~b! While the transit rate is extremely high in the equili
rium liquid, it should decrease strongly as temperature
lowered below melting. It is this slowing down which ex
presses the freezing out of the intervalley motion.

~c! There is no discontinuity in thermodynamic or tran
port properties at the melting temperature.

~d! Along with the slowing of the transit rate, as temper
ture is lowered for the supercooled liquid, self diffusion w
decrease, and viscosity will increase, similar to the beha
of real liquids as the glass transition is approached. We h
previously developed an independent atom model to desc
self diffusion in the monatomic liquid state, and in Sec.
we will apply this model to the supercooled liquid, and w
extract the underlying relation between glass transition
havior and the slowing of the transit rate.

~e! Though transport properties are sensitive to the tra
rate, as just mentioned, the internal energy~7! is independent
of the transit rate. This is because every random valley
the same potential parametersF0 and $vl%. Hence for a
monatomic system constrained to move only among rand
valleys, the system energy will not show evidence of a gl
transition. However, for a more complicated system, like
example a binary system composed ofA and B atoms, the
structural potentialF0 will depend on theA-A, B-B, and
A-B correlations, so thatF0 will split into a band of ener-
gies. Now the system can relax among valleys of uneq
potential energy, and as the transit rate slows with decrea
temperature, the internal energy will exhibit a glass tran
tion. An independent atom model capturing this effect w
be studied in Sec. IV.

III. INDEPENDENT ATOM MODEL FOR THE
TRANSPORT GLASS TRANSITION

The experimental quantity which perhaps most univ
sally typifies the glass transition is the shear viscosityh.
Angell @12# showed that the temperature dependence ofh for
all glass forming liquids is qualitatively rationalized by th
single Vogel-Tamann-Fulcher~VTF! function,
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h5A expS BT0

T2T0
D , ~8!

whereA, B, andT0 are positive parameters. The variatio
in shape of theh(T) curves, from fragile to strong glas
formers, is reproduced by the variation ofB from small to
large, respectively@12#. The important point for our discus
sion is that the temperature dependence of viscosity is m
stronger than Arrhenius, and indeed the use of Eq.~8! to fit
h(T) data indicates thath→` at the finite temperatureT0 .

While we have not completed application of liquid d
namics theory to shear viscosity, we have treated self di
sion in the liquid state@11#, and have done extensiv
molecular-dynamics~MD! calculations of the self diffusion
coefficient D for supercooled liquid sodium@19#. The fol-
lowing evidence indicates that the essential glass transi
behavior ofh(T) is also present inD(T). First, consider the
Stokes-Einstein relation

D5
kT

bh
, ~9!

whereb is a distance on the atomic scale. When Eq.~9! is
used to relate experimental data forD andh, b is found to be
nearly temperature independent for a given liquid~data for
Lennard-Jones argon at liquid density are given in Ref.@23#,
and data for liquid sodium are given in refs.@24–26#!. Sec-
ond, the common result of MD calculations is that, with
limits of computational error,D appears to go to zero at
finite temperature~see Refs.@27# and @28#, and especially
Fig. 10 of Ref.@19#!. We will therefore consider the tempera
ture dependence ofD as an appropriate expression of gla
transition behavior.

In applying liquid dynamics theory to self diffusion in
monatomic liquid, the following argument led us to devel
the independent atom model. First, to calculate the parti
function, the normal vibrational modes for each man
particle valley are quite useful, as is demonstrated by res
~2!–~5! for the equilibrium thermodynamic functions. How
ever, to follow the actual motion of the atoms, the norm
modes lose their utility, because the very high rate of tran
causes the normal mode eigenvectors for any single atom
change many times during one mean vibrational period
the atom. Hence each atom ‘‘sees’’ a rapidly fluctuating p
tential well, due to its neighbors, and the leading approxim
tion to this fluctuating well is its time average, which is
constant nearly harmonic well, the same for every atom. T
independent atom model allows each atom to move cla
cally through a set of identical harmonic wells, and at ea
turning point the atom may move forward into a new well,
may move back in the same well. An algebraic expressio
obtained for the velocity autocorrelation function, and t
self diffusion coefficient is found to be@11#

D5
4kT

pMv S j

22j D , ~10!

whereM is the atomic mass,v is the vibrational frequency
of each isotropic three-dimensional well, andj is a parameter
discussed below. The independent atom model gives enc
aging agreement with the velocity autocorrelation functi
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7052 PRE 60DUANE C. WALLACE
for liquid alkali metals, and with experimental values ofD
for liquid metals, wherev is always close to the mean vibra
tional frequency in the liquid@11#.

According to Eq.~10!, if D vanishes at finiteT, then j
must have the same property. The parameter is given by@11#

j5@12^cosu&#m, ~11!

wherem is the probability that an atom will transit when
reaches a turning point, with 0<m<1, and ^cosu& is the
average change in the atom’s displacement direction-co
at the transit. But̂ cosu& can have little temperature depe
dence@11#, and we can setj' 3

2 m as an approximation, so
the important temperature dependence ofj resides in the
transit probabilitym. We have already expressed the id
that transits are controlled, not bythermal activation, but by
correlations@11#. Suppose for example that a small group
two or three atoms is prepared to make a transit. The tra
will occur only if these atoms, plus a number of their neig
bors, are all in the right place at the right time, so that e
transiting atom sees a clear path to move on to a new e
librium position. More precisely, each transit occupies onl
small volume, call it a window, in the many-particle pha
space. In the liquid state, the transit probability is large,
at m* 1

2 , which means the system easily finds the tran
windows. Further, sincem is bounded by 1, thenm can in-
crease only weakly asT increases aboveTm , and this prop-
erty is in agreement with all available velocity autocorre
tion and self diffusion data for liquid metals@11#. On the
other hand, asT decreases belowTm , the many-particle
phase space sampled by the system decreases strongly
the system is virtually unable to find a transit window. W
therefore expectm to become essentially zero at a finite tem
perature.

Let us use our MD calculations for supercooled liqu
sodium @19#, to test the above picture. The characteris
temperature for random valleys isu25154.0 K, and this
givesv251.562 (1013/s) for the rms normal mode frequenc
@Eqs.~3.6! and~3.7! of Ref. @19##. With v5v2 , we used Eq.
~10! to find j from each of our calculated values ofD, and
the results are graphed in Fig. 1. Thej(T) data are fitted
quite well by the VTF function with only one adjustab
parameter

j~T!5expS 2T0

T2T0
D , ~12!

with T05121 K. Hencej(T) for supercooled liquid sodium
has stronger-than-Arrhenius temperature dependence,
appears to go to zero at around 121 K. For comparison,
dium melts at 371 K. We draw three conclusions from t
above results.

~a! In supercooled liquid dynamics, the transport gla
transition results from a strong decrease of the transit
with decreasing temperature. In the independent atom mo
this appears as a VTF temperature dependence ofj(T), and
hence also ofm(T).

~b! The strong temperature dependence ofm, and espe-
cially the vanishing ofm at a finite temperature, is consiste
with the view that transits are controlled by phase-space
relations.
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~c! Since our analysis has so far been limited toT.Tm for
the velocity autocorrelation function@11#, and has been lim-
ited in Fig. 1 toj*0.1, additional calculations of these qua
tities at lower temperatures would further clarify the natu
of the transport glass transition.

IV. INDEPENDENT ATOM MODEL FOR THE THERMAL
GLASS TRANSITION

Let us now extend the independent atom model, to end
it with a thermal glass transition. To do this, according to t
discussion in Sec. II, it is necessary to remove the ene
degeneracy of the independent atom potential wells. We
construct the simplest possible model. The independent a
is allowed to oscillate in either of two isotropic three
dimensional harmonic wells, and to transit between
wells, with some probability, at each turning point. The p
tential minimum of well 2 is at zero, the potential minimu
of well 1 is at D.0, and each well has frequencyv. The
atom has total energyE, so that its mean kinetic energy i
well 2 is K25 1

2 E, and its mean kinetic energy in well 1 i
K15 1

2 (E2D). Our system consists ofN such atoms, each
with energyE, with N1 in well 1 andN2 in well 2, where
N11N25N. The mean kinetic energy of the entire system
NK, whereK is given by

K5n1K11n2K2 , ~13!

and n15N1 /N, n25N2 /N. We assume there are intera
tions among the oscillating atoms, and these interacti
keep the system kinetic energy in an equilibrium distributio
This distribution is characterized by the temperatureT, and
we neglect quantum effects for simplicity, and take the cl
sical relationK5 3

2 kT. The information in the above equa
tions is then expressed in the form

FIG. 1. Points are values ofj extracted from MD calculations o
D for supercooled liquid sodium, and the line is the fitted VT
function withT05121 K. Eachj is within its estimated error of the
line, except for the point at 310 K.
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E53kT1n1D. ~14!

Since no energy is to be associated with the transits,E is the
thermodynamic internal energy per atom, orNE5U.

At a turning point, an atom in well 1 has probabilitym1 of
transiting to well 2, and an atom in well 2 has probabilitym2
of transiting to well 1. Since the time between turning poin
is p/v, the rate per atom of transiting out of well 1 isR1
5(p/v)m1 , and the rate per atom of transiting out of well
is R25(p/v)m2 . Then the time rates of change of the o
cupation numbersn1 andn2 are given by

ṅ152n1R11n2R2 ,
~15!

ṅ25n1R12n2R2 ,

or, eliminatingn2 ,

ṅ15R22n1~R11R2!. ~16!

Following the results of Sec. III, we modelm1 andm2 with
VTF functions, each containing a single parameter in
form of a critical temperature, so that

R15
p

v
expS 2T1

T2T1
D for T>T1 ,

R150 for T<T1 ,
~17!

R25
p

v
expS 2T2

T2T2
D for T>T2 ,

R250 for T<T2 .

Since well 1 lies at potential above well 2, we expectT1
,T2 . But T1 should be nearT2 , so thatR1 and R2 slow
down together, to achieve glass transition behavior.

The complete evolution of the system is given by Eq.~14!
for the internal energy, and Eq.~16! for the relaxation ofn1 .
The independent variables areT andn1 , and the model con-
tains the four parametersT1 , T2 , D, andv. We will scale
temperature withT2 , and will scale time with the vibrationa
periodt52p/v, so that the characteristic properties of t
model can be expressed in terms of the two parame
T1 /T2 andD.

Our first calculation is of the equilibrium curve forn1(T).
The equilibrium condition isṅ150, and from Eq.~16! this
gives

n1~eq!5
R2

R11R2
. ~18!

This tells us thatn1~eq!→ 1
2 as T→`, andn1~eq!→0 asT

decreases toT2 . Between these limits, the shape of the cur
depends onT1 /T2 , as shown in Fig. 2. Hence the indepe
dent atom model possesses a one-parameter family of e
librium curves. On each equilibrium curve, according to E
~14!, the internal energy per atom is the thermal contribut
3kT, plus the potential termn1D, with n1 shown in Fig. 2.

Let us next calculaten1(T) under the condition that ou
system is placed in equilibrium at a high temperature, an
then cooled at the constant rateg, defined by
s

e

rs

ui-
.
n

is

Ṫ/T252g. ~19!

n1(T) is obtained by simultaneous integration of Eq.~19! for
Ṫ, and Eq.~16! for ṅ1 . In the process, the system remai
near equilibrium, andn1(T) follows just above the equilib-
rium curve, down to some temperature, and then the sys
passes out of equilibrium and freezes into a state with n
zero n1 . Representative curves are shown in Fig. 3,
T1 /T250.98, and for a range of cooling rates as expres
by the dimensionless variablegt. If the temperature at which
the system passes out of equilibrium is the glass transi
temperatureTg , then clearly our system exhibits a rat
dependentTg . The curves in Fig. 3 are similar to the curve

FIG. 2. The equilibrium curvesn1~eq! vs T/T2 , for various
T1 /T2 values.

FIG. 3. Curves ofn1 vsT/T2 for cooling from equilibrium at the
constant rates labeled by values ofgt. T1 /T2 is 0.98, and the lower
envelope curve isn1 ~eq!.



f
nd
ts
m

-
re

is
te

e
n
no
e

e

rd
lib
e

re

s.
ant,
.

e

ed,

of
de
ui-

t is

Re-

in
e-
s
ter

n
e-
s
wer

m
p-

es
an-
me
er-
re

nt
n-

red
om
no
ilib-

he

7054 PRE 60DUANE C. WALLACE
sketched by Ediger, Angell, and Nagel~Fig. 1 of Ref.@15#!,
to illustrate rate dependence ofTg . In addition, the curves o
Fig. 3 exhibit a property described by Angell, Clarke, a
Woodcock@29#, in their discussion of computer experimen
on glass formation, namely, that the glass transition beco
sharper as the cooling rate is lowered.

For a given cooling rate, let us defineTg as the tempera
ture at which n1~eq! is equal to the zero-temperatu
frozen-in value ofn1 ~see Fig. 3!. With this definition,Tg is
always aboveT2 . Our results are shown in Fig. 4, where it
seen thatTg decreases monotonically with the cooling ra
and the curve depends onT1 /T2 . The zero-temperature
frozen-in value ofn1 varies from1

2 at infinite cooling rate, to
zero at zero cooling rate, and the crossover cooling rat
strongly dependent onT1 /T2 . Again our results are show
in Fig. 4. In an experiment on a real material, one might
be able to measuren1 directly, but would presumably be abl
to measure the frozen-in potential energyn1D per atom@see
Eq. ~14!#. The shapes of the curves in Fig. 4, forTg and
n1(T50) vs the cooling rate, are similar to those obtain
by Vollmayr, Kob, and Binder@30#, from large scale com-
puter simulations of binary Lennard-Jones systems~their
Figs. 5 and 6, respectively!.

The final property we wish to discuss is relaxation towa
equilibrium. Suppose our system is removed from equi
rium, to any point on the graph of Fig. 2, and is then allow
to relax. There are three relaxation regions:

T,T1 ; R15R250,

T1,T,T2 ; R1.0,R250, ~20!

T2,T; R1.0,R2.0.

FIG. 4. The glass transition temperatureTg /T2 is shown in the
upper panel as a function of cooling rategt and for several values
of T1 /T2 , and n1 frozen in at zero temperature is shown in t
lower panel. The log function is base 10.
es

,
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t
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-
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For T,T1 , no relaxation occurs, and forT1,T,T2 , the
relaxation isextremelyslow for the model parameters we a
studying. To keep the discussion simple, let us considerT2
,T, which still allows for T above or belowTg . We will
examine relaxation for isothermal and adiabatic processe

In isothermal relaxation, the temperature is held const
so the ratesR1 andR2 , given by Eq.~17!, are each constant
The relaxation equation~16! can be written fordn15n1
2n1~eq!, as

dṅ152dn1~R11R2!. ~21!

Hence the relaxation is exponential, with relaxation tim
(R11R2)21.

In adiabatic relaxation, the system is thermally isolat
so its energyE is constant. From Eq.~14!, the conditionĖ
50 is

3kṪ52Dṅ1 . ~22!

The relaxation is calculated by simultaneous integration
Eqs.~16! and~22!. The process is sensitive to the magnitu
of D in Eq. ~22!. The system relaxes to a point on the eq
librium curve, so the functionsdn15n12n1~eq!, and dT
5T2T~eq!, relax to zero. The constant energy constrain
dE(t)50 for all t, and settingdE(t)5dE(0), Eq. ~14!
yields

dT~ t !

dT~0!
5

dn1~ t !

dn1~0!
. ~23!

Hence there is only one independent relaxation function.
sults of our calculations are as follows.

~a! If the initial state lies above the equilibrium curve
Fig. 2, thenn1 decreases toward equilibrium, and corr
spondinglyT increases@Eq. ~22!#. As T increases, the rate
R1 andR2 increase, causing the relaxation to proceed fas
than exponentially in time.

~b! If the initial state lies below the equilibrium curve i
Fig. 2, then n1 increases toward equilibrium, and corr
spondinglyT decreases@Eq. ~22!#. As T decreases, the rate
R1 andR2 decrease, causing the relaxation to proceed slo
than exponentially in time.

~c! In the limit as the system come near the equilibriu
curve of Fig. 2, from above or below, the relaxation a
proaches exponential in time.

V. SUMMARY OF CONCLUSIONS

Supercooled liquid dynamics

In monatomic liquid dynamics theory, the system mov
among a large number of intersecting nearly harmonic r
dom valleys in the many-particle potential surface. The sa
potential surface underlies the motion of atoms in the sup
cooled liquid. The quantum thermodynamic functions a
given by Eqs.~2!–~5!, and contain the entropy consta
Nk ln w, expressing motion of the system among all the ra
dom valleys. In reality, however, as temperature is lowe
below Tm , at some temperature the motion among rand
valleys will begin to freeze out, and then the entropy is
longer defined. We therefore have to develop a nonequ
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rium theory, based on the Hamiltonian motion of the syste
The motion is separated into two parts, and each part is
alized to its essential physical character. The following
scription emerges.

The vibrational motion is the motion of the system in a
single random potential valley. This is assumed to be pu
harmonic, with anharmonicity serving to keep the vibration
motion in equilibrium. The system energy is entirely vibr
tional, so the internal energy is the vibrational energy,@Eq.
~7!#, and temperature is defined through the equilibrium d
tribution nl @Eq. ~5!#.

A transit is the motion of the system in passing from o
valley to another. Transits are assumed to be instantane
and energy and momentum conserving, so that their
function is to move the system among the available valle

There is no discontinuity in thermodynamic or transp
properties as the system is cooled throughTm . However, as
temperature is decreased belowTm , the transit rate de-
creases, giving rise to a glass transition in the transport p
erties. Because all random valleys have the same pote
parameters, for a monatomic system, the internal energy
not show evidence of a glass transition. However for a bin
system, for example, the random valleys will acquire a ra
of potential parameters, and now the slowing of the tran
rate gives rise to a glass transition in the internal energy

Transport glass transition

We want an elementary model incorporating the abo
physical properties, and for which we can calculate the n
equilibrium evolution under any condition. The independe
atom model, originally developed to treat self diffusion
the liquid, serves this purpose. An atom moves through a
of identical isotropic three-dimensional harmonic wells, ea
with frequencyv, and at each turning point the atom mov
forward into a new well with probabilitym, or moves back in
its old well with probability 12m. The system is a collection
of such atoms, with the appropriate physical variables, s
as amplitudes and phases, being averaged over the co
tion. The independent atom model has been justified a
leading approximation to the atomic motion, by averag
out the fluctuations in the potential field ‘‘seen’’ by a sing
atom in the liquid state@11#.

The independent atom model gives Eq.~10! for the self
diffusion coefficientD, wherej'm. To apply the indepen-
dent atom model to the supercooled liquid, we used our c
puter calculations for metallic sodium to findj(T) at T
&Tm . The result is shown in Fig. 1, and leads to the follo
ing conclusions.

j(T) is well fitted by the VTF function withT05121 K.
The same temperature dependence applies to the tr
probability m(T), supporting the view that transits are n
merely thermally activated, but are limited by correlatio
among the atoms involved in a transit. Thus a transit
.
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only a small window in the many-particle phase space, a
the phase space sampled by the system decreases stron
temperature decreases, causingm to become essentially zer
at a finite temperature.

Directly as a result of the slowing down of the transit ra
with decreasing temperature, the self diffusion and visco
exhibit glass transition behavior. To further clarify the gla
transition process, additional calculations are needed of
velocity autocorrelation function atT&Tm , and ofj or m at
values& 0.1.

Thermal glass transition

To obtain a thermal glass transition in the independ
atom model, the atom is allowed to move within two wel
each with frequencyv, but with well 1 lying higher than
well 2. The transit probabilitiesm1 out of well 1, andm2 out
of well 2, are modeled with VTF functions having critica
temperaturesT1 andT2 , respectively, withT1,T2 . The ra-
tio T1 /T2 becomes an important parameter of the model. O
calculations lead to the following conclusions.

In equilibrium, the occupation numbers aren15n25 1
2 at

T5`, and well 1 gradually empties asT decreases, unti
n150 at T5T2 . The shape of the intervening equilibrium
curve depends onT1 /T2 ~Fig. 2!.

Upon cooling at a constant rate, from an equilibrium st
at high temperature, the system remains near equilibr
down to the glass transition temperatureTg , then the system
passes out of equilibrium and freezes into a state with n
zero n1 . Tg decreases, and the glass transition becom
sharper, as cooling rate decreases~Fig. 3!. Curves ofTg vs
cooling rate, and of the frozen-in value ofn1 vs cooling rate,
depend onT1 /T2 ~Fig. 4!. The shapes of these curves a
similar to results of large-scale computer simulations@30#.

When the system is removed from equilibrium and
lowed to relax isothermally, the relaxation is exponential
time. When the system is allowed to relax adiabatically,
relaxation is nonexponential in general, but approaches
ponential as the system comes arbitrarily close to equi
rium.

In our view, though the independent atom model is a
vere idealization of real systems, expressing the motion
combination of vibrations and transits captures the unde
ing nature of real glass transition behavior. In a simple a
natural manner, the independent atom model accounts fo
four main characteristics of the glass transition, as listed
Sec. I, plus further details actually found in large-scale co
puter simulations.
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