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In monatomic liquid dynamics theory, the system moves among a large number of intersecting nearly
harmonic valleys in the many-particle potential energy surface. The same potential surface underlies the
motion of atoms in the supercooled liquid. As temperature is decreased below the melting temperature, the
motion among the potential valleys will begin to freeze out, and the system will pass out of equilibrium. It is
therefore necessary to develop a nonequilibrium theory, based on the Hamiltonian motion. The motion is
separated into two distinct parts, and idealized as follq@jsthe vibrational motion within a single valley is
assumed to be purely harmonic, and remaining in equilibrium;(ahdhe transit motion, which carries the
system from one valley to another, is assumed to be instantaneous, and energy and momentum conserving.
This idealized system is capable of exhibiting a glass transition behavior. An elementary model, incorporating
the idealized motion, is the independent atom model, originally developed to treat self diffusion in monatomic
liquids. For supercooled liquids, in the independent atom model, the vanishing of self diffusion at a finite
temperature implies the same property for the transit probability. The vanishing of the transit probability at a
finite temperature supports the view that transits are not merely thermally activated, but are controlled by
phase-space correlations. For supercooled liquid sodium, the transit probability has Vogel-Tamann-Fulcher
temperature dependence. The independent atom model is shown to be capable of exhibiting all the essential
glass transition properties, including rate dependence of the glass transition temperature, and both exponential
and nonexponential relaxatiof51063-651X99)01412-9

PACS numbes): 64.70.Pf, 61.20.Gy, 66.28d, 61.43.Dq

[. INTRODUCTION application, to model the predicted behavior, and to compare
with experiment. We are interested in the supercooled liquid
Liquid dynamics theory describes the motion of atoms inin general, and especially in the glass transition. The nature
the liquid state. Over the years, the main problem in develof materials in this regime is described in the reviews of
oping this theory has been to understand the nature of th&ngell [12,13, Stillinger [14], and Ediger, Angell, and Na-
many-particle potential energy surface upon which the liquidgel [15]. We will not consider the tunneling-state effects,
atoms move. Early on, Frenkgl,2] argued that atomic mo- which are common to glasses at lower temperat[t6sl7.
tion consists mainly of vibrations about equilibrium posi- Due to the current limited application of liquid dynamics
tions, while occasionally the equilibrium positions also theory, our theoretical work is limited to monatomic sys-
move. Stillinger and WebdB3—7] used the computer to find tems, with one extension to nonmolecular binary systems.
inherent structures, which are local potential minima in theThough laboratory measurements are scarce for these super-
many-particle potential surface. LaViolette and Stuf8  cooled liquids, computer simulations are providing much
varied the interatomic potential and density, and found a vauseful data. From the detailed descriptions of the properties
riety of structural symmetries. More recently, we argued thaof glass forming material§12—15, we conclude that the
the potential surface for a monatomic system is composed dbllowing characteristics must be exhibited by any meaning-
a large number of intersecting nearly harmonic valleys, thaful theory of the glass transition.
these are divided into the classes of random and symmetric, (a) Upon cooling through the melting temperature, in the
and the random valleys dominate the statistical mechanics @bsence of crystallization, there is no discontinuity in ther-
the liquid state because they are vastly most numerous. Omodynamic or transport properties.
this basis we constructed a liquid dynamics Hamiltonian, (b) Upon further cooling, a temperature is reached where
evaluated the canonical partition function, and achievedhe system falls out of thermodynamic equilibrium, and this
agreement between theory and experiment for the thermodylass transition temperature depends on the cooling rate.
namic properties of liquid metal9,10]. In addition, from an (c) At temperatures above the glass transition, the shear
investigation of the intervalley motion of the system, liquid viscosity exhibits a characteristic strot@pparently singu-
dynamics theory has led to an independent atom modelar) temperature dependence.
which gives a respectable account of the velocity autocorre- (d) When the system is removed from equilibrium, above
lation function and self diffusiof11]. or below the glass transition temperature, it relaxes toward
When a liquid is cooled below its melting temperature, equilibrium, and nonexponential relaxation is commonly ob-
and when it does not crystallize, the system is called a suserved.
percooled liquid. From our current understanding of the mo- In Sec. Il, the liquid dynamics Hamiltonian is applied to
tion of atoms in the liquid, it is apparent that the same dethe supercooled liquid regime. It becomes apparent that the
scription, indeed the same Hamiltonian, also applies to theupercooled liquid will not be able to maintain equilibrium
supercooled liquid. The purpose of this work is to make thats temperature is lowered, and that a general nonequilibrium
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theory is needed. Based on the Hamiltonian, the outline ofreated in perturbation theory. When the algebra is done, the
this theory is developed. In Sec. lll, glass transition behavioHelmholtz free energy becomga2]
of transport properties is accounted for by the independent

atom model, through the slowing down of intervalley transits 1
as temperature is lowered. In Sec. IV, glass transition behaF = ®o—NKTInw+ >, 5wy —kTIn(n,+1) |+ Fa+Fg,
ior of the internal energy is accounted for by the same » )

model, after removing the degeneracy of the potential energy
valleys, again through the same slowing down of intervalley . .
transits. Our conclusions are summarized in Sec. V, our mai herzFA and ::EE) r?_spect_llyr(]—:-ly EXpress tg_e anhtzarmolnlc and
conclusion being that the independent atom model express un dary tcon rioutions. be corresponding Intérnal energy
a realistic approximation to glass transition physics. » and entropyS are given by

1
N+ =

5 +Up+Ug, 3)

II. DYNAMICS OF THE SUPERCOOLED LIQUID U =(I)O+E hwy
x

The classification of potential energy valleys as random or
symmetric is an important step in clarifying the nature of the
many-particle potential energy surfaf®]. The symmetric S=NkInw+ kz [(ny+1)In(ny+1)—ny, Inn,]+Sa+Sg,
valleys can be crystalline, microcrystalline, or just have A
some remnant of crystal symmetry among near neighbors, as 4
in the example of amorphous carbon, where nearly all atoms
have four nearest neighbors in distorted tetrahedral arrang&heren, is the boson occupation number,
ments[18]. Because of the wide variety of possible symme-
tries, the symmetric valleys have a wide range of shapes, and 1
this wide range complicates the system Hamiltonian. In con- ”x:m- ®)
trast, the random valleys have only random near-neighbor

symmetry, that is, they have_no order parameter_, and.hen':l‘f’]nally, since in this paper we are only interested in proper-
must all have the same shafie the thermodynamic limjt . : . .
ties depending on the motion of the atoms, the electronic

Further, because of their randomness, the random valleys ™.~ "~ o
: : L excitation contributions are neglected throughee, e.g.,
must be of overwhelming numerical superiority, hence theyRefs [9] and[22])
are the only valleys which need be included in the liquid W. ) d identify the limits of ilibri
dynamics Hamiltonian. We have recently concluded a ve are now ready (o | entify the limits o equiiibrium
. ' . . statistical mechanics for the problem at hand. First note, the
molecular-dynamics study which strongly confirms these

properties of the many-particle potential surface, for a potenpartltlon function we have constructed approximate be-

tial which accurately represents metallic sodili®,20] cause the SVSteT“ phase space has been I'imited to just the
The liquid dynamics classical statistical mec;haﬁics hagd" dpm valleys in the many-particle potential su_rfac_e. But

been presente®]. Here we present the quantum statistics to%hIS limited phas_e space should be a good approximation, not
enable the low .temperature description. First considér only for the liquid, but aI;o for_ the supercooled |IQU!d, even
' €fhough the supercooled liquid is metastable. Accordingly, the

single random valley. The structural potentiy is the sys- i o . :
tem potential at the bottom of the valley. The normal modesupercooled liquid equilibrium thermodynamic functions are

o given by Egs.(2)—(5). Now a problem arises. The entropy
clf 1osc:;l\lla?(§)rna:'r\lo_ ug?tictlzes \;?’!?ny ;)noc}t?l?rmﬂfm?;;’:ig [Eq. (4)] contains the constant terhk Inw, expressing that
;10|:r.1.(.a,ntump disglacemenyq a’nd frequencys, . Then the system visits the entire collection of random valleys. But

Ao Ao A

the quasiharmonic Hamiltonian for the system within thisin reality, when the system is cooled from the liquid, at some
rand%m valley is y temperature its motion among the random valleys begins to

freeze out, and then the valleys are no longer equally acces-

sible, and the entropy is not defined. To treat the system in

this regime, we have to abandon equilibrium statistical me-
() . i

chanics, at least for the nonequilibrium degrees of freedom,

and return to the Hamiltonian-induced motion of the system,
whereM is the atomic mass. The complete liquid dynamicsas it moves among nonequilibrium states.
Hamiltonian is the sum of quasiharmonic Hamiltonighg To proceed with this program, let us consider the system
over all random valleys in the potential surface, plus correcin any state, and separate the motion into two distinct parts:
tions for the anharmonicity of each valley, plus correctionsthe motion within a single random valley, called the vibra-
for the boundary where valleys intersect. To evaluate theional motion, and the motion from one valley to another,
partition function, two observations are important. First, thecalled a transit. To simplify the picture, we will idealize each
parameters, and{w, } are the same for every random val- type of motion, keeping only its essential physical character.
ley, so we merely have to evaluate the quasiharmonic parti- In the vibrational motion, we keep only the quasihar-
tion function for one valley, and multiply bw", the total monic part, and assume that the vibrational interactitines
number of random valleys. From a careful analysis of theanharmonicity are sufficient to maintain this quasiharmonic
entropy of melting for normal-melting elements, we havepart in internal thermodynamic equilibrium. Under this con-
found the universal value In=0.8[9,21]. Second, the an- dition, a temperature is defined, the vibrational free energy
harmonic and boundary contributions are small, and can beemains physically meaningful, and can be written

2
p> 1
et Ml

Hy=®,+
H OEZM 2
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1
Fup=Po+ >, S, =kTIn(n,+1)|. (6) n:Aexp(
A

We have previously observed that transits are local, i.eVN€reA, B, andT, are positive parameters. The variation

each transit corresponds to a change in the equilibrium pos|? Shape of then(T) curves, from fragile to strong glass

tions of only a small group of neighboring atofigs11]. For formers, is reproduced by the variation Bffrom small to

the present let us assume that each transit is instantaneousd9€; respectively12]. The important point for our discus-
on is that the temperature dependence of viscosity is much

time, and conserves total energy and momentum among th&

transiting atoms. Then the transits make no contribution t$ONger than Arrhenius, and indeed the use of (Bhto fit
the system energy, and their sole function is to move the/(T) data indicates thag— o at the finite temperaturé, .

system among the many available potential energy valleys, While we have not completed application of liquid dy-

This idealization provides for a simple resolution of the sys-"amics theory to shear viscosity, we have treated self diffu-

tem properties, as follows. sion in the I|qU|_d state[11], and have done extensive
(a) Since the energy is all vibrational, the total energy ismolecular—dynamlcséMD) calculations of the self diffusion

just the quasiharmonic contribution from E@), coefficientD for supercooled liquid sodiuril9]. The fol-
lowing evidence indicates that the essential glass transition

behavior of7(T) is also present i (T). First, consider the

U=Uyp,=Do+ >, hw, nx+; . (7)  Stokes-Einstein relation
A
kT
The system temperature is defined through the equilibrium D= by’ ©

distributionn, , given by Eq.(5).

(b) While the transit rate is extremely high in the equilib- whereb is a distance on the atomic scale. When Bj.is
rium liquid, it should decrease strongly as temperature isised to relate experimental data fdand », b is found to be
lowered below melting. It is this slowing down which ex- nearly temperature independent for a given lig(ddta for

presses the freezing out of the intervalley motion. Lennard-Jones argon at liquid density are given in RzS],
(c) There is no discontinuity in thermodynamic or trans- and data for liquid sodium are given in ref24-26). Sec-
port properties at the melting temperature. ond, the common result of MD calculations is that, within

(d) Along with the slowing of the transit rate, as tempera-limits of computational errorD appears to go to zero at a
ture is lowered for the supercooled liquid, self diffusion will finite temperaturesee Refs[27] and[28], and especially
decrease, and viscosity will increase, similar to the behavioFig. 10 of Ref[19]). We will therefore consider the tempera-
of real liquids as the glass transition is approached. We haveire dependence d as an appropriate expression of glass
previously developed an independent atom model to describieansition behavior.
self diffusion in the monatomic liquid state, and in Sec. Il In applying liquid dynamics theory to self diffusion in a
we will apply this model to the supercooled liquid, and will monatomic liquid, the following argument led us to develop
extract the underlying relation between glass transition bethe independent atom model. First, to calculate the partition
havior and the slowing of the transit rate. function, the normal vibrational modes for each many-

(e) Though transport properties are sensitive to the transiparticle valley are quite useful, as is demonstrated by results
rate, as just mentioned, the internal enefdyis independent (2)—(5) for the equilibrium thermodynamic functions. How-
of the transit rate. This is because every random valley hasver, to follow the actual motion of the atoms, the normal
the same potential parameteis, and {w,}. Hence for a modes lose their utility, because the very high rate of transits
monatomic system constrained to move only among randoroauses the normal mode eigenvectors for any single atom to
valleys, the system energy will not show evidence of a glasshange many times during one mean vibrational period of
transition. However, for a more complicated system, like forthe atom. Hence each atom “sees” a rapidly fluctuating po-
example a binary system composed/find B atoms, the tential well, due to its neighbors, and the leading approxima-
structural potentiatb, will depend on theA-A, B-B, and tion to this fluctuating well is its time average, which is a
A-B correlations, so tha® will split into a band of ener- constant nearly harmonic well, the same for every atom. The
gies. Now the system can relax among valleys of unequahdependent atom model allows each atom to move classi-
potential energy, and as the transit rate slows with decreasinzplly through a set of identical harmonic wells, and at each
temperature, the internal energy will exhibit a glass transiturning point the atom may move forward into a new well, or
tion. An independent atom model capturing this effect will may move back in the same well. An algebraic expression is
be studied in Sec. IV. obtained for the velocity autocorrelation function, and the

self diffusion coefficient is found to bfl1]

IIl. INDEPENDENT ATOM MODEL FOR THE AKT ( £ )
: (10

TRANSPORT GLASS TRANSITION D=—| —
TMw\2—§¢

The experimental quantity which perhaps most univer-
sally typifies the glass transition is the shear viscosjty whereM is the atomic massy is the vibrational frequency
Angell[12] showed that the temperature dependencefof  of each isotropic three-dimensional well, afi$ a parameter
all glass forming liquids is qualitatively rationalized by the discussed below. The independent atom model gives encour-
single Vogel-Tamann-FulchéWTF) function, aging agreement with the velocity autocorrelation function
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for liquid alkali metals, and with experimental values Df 08 , |
for liquid metals, wherev is always close to the mean vibra-
tional frequency in the liquidi11]. 07 i
According to Eq.(10), if D vanishes at finitel, then & .3
must have the same property. The parameter is givgii By 06 -
¢=[1—(cos6)], (1) .
where u is the probability that an atom will transit when it
reaches a turning point, with<9u<1, and(cosé) is the w041
average change in the atom’s displacement direction-cosine
at the transit. Butcosé) can have little temperature depen- 03
dence[11], and we can sef~3u as an approximation, so
the important temperature dependenceéafesides in the o2
transit probability . We have already expressed the idea
that transits are controlled, not llyermal activation but by o1l
correlationg11]. Suppose for example that a small group of
two or three atoms is prepared to make a transit. The transit

will occur only if these atoms, plus a number of their neigh- S0 200 300 400
bors, are all in the right place at the right time, so that each T()

transiting atom sees a clear path to move on to a new equi-
librium position. More precisely, each transit occupies only a  FIG. 1. Points are values gfextracted from MD calculations of
small volume, call it a window, in the many-particle phasepD for supercooled liquid sodium, and the line is the fitted VTF
space. In the liquid state, the transit probability is large, sayunction with T,=121 K. Eaché is within its estimated error of the
at u=3%, which means the system easily finds the transitine, except for the point at 310 K.

windows. Further, sincge is bounded by 1, thep can in-

crease only weakly a§ increases abové,,, and this prop- (c) Since our analysis has so far been limitedte T, for
erty is in agreement with all available velocity autocorrela-the velocity autocorrelation functigri 1], and has been lim-
tion and self diffusion data for liquid meta[d1]. On the ited in Fig. 1 toé=0.1, additional calculations of these quan-
other hand, asT decreases beloW,, the many-particle tities at lower temperatures would further clarify the nature
phase space sampled by the system decreases strongly, usfilthe transport glass transition.

the system is virtually unable to find a transit window. We
therefore expect to become essentially zero at a finite tem-
perature.

Let us use our MD calculations for supercooled liquid
sodium [19], to test the above picture. The characteristic Let us now extend the independent atom model, to endow
temperature for random valleys i#,=154.0K, and this it with a thermal glass transition. To do this, according to the
givesw,=1.562 (16%s) for the rms normal mode frequency discussion in Sec. II, it is necessary to remove the energy
[Egs.(3.6) and(3.7) of Ref.[19]]. With o= w,, we used Eq. degeneracy of the independent atom potential wells. We will
(10) to find & from each of our calculated values Bf and  construct the simplest possible model. The independent atom
the results are graphed in Fig. 1. THET) data are fitted is allowed to oscillate in either of two isotropic three-
quite well by the VTF function with only one adjustable dimensional harmonic wells, and to transit between the

IV. INDEPENDENT ATOM MODEL FOR THE THERMAL
GLASS TRANSITION

parameter wells, with some probability, at each turning point. The po-
tential minimum of well 2 is at zero, the potential minimum

—-Ty of well 1 is atA>0, and each well has frequeney The
§(T)=exp{T_T ) (12 atom has total energl, so that its mean kinetic energy in

well 2 is IC,=3E, and its mean kinetic energy in well 1 is

with To=121 K. Hence&(T) for supercooled liquid sodium K1=3z(E—A). Our system consists 0f such atoms, each
has stronger-than-Arrhenius temperature dependence, aMdth energyE, with Ny in well 1 andN, in well 2, where
appears to go to zero at around 121 K. For comparison, sd¥1+N2=N. The mean kinetic energy of the entire system is
dium melts at 371 K. We draw three conclusions from theNK, whereK is given by
above results.
(@ In supercooled liquid dynamics, the transport glass K=n1K1+nyKs, (13
transition results from a strong decrease of the transit rate
with decreasing temperature. In the independent atom modednd n;=N; /N, n,=N,/N. We assume there are interac-
this appears as a VTF temperature dependenééTf, and tions among the oscillating atoms, and these interactions
hence also oju(T). keep the system kinetic energy in an equilibrium distribution.
(b) The strong temperature dependenceupfand espe- This distribution is characterized by the temperattiyeand
cially the vanishing ofu at a finite temperature, is consistent we neglect quantum effects for simplicity, and take the clas-
with the view that transits are controlled by phase-space corsical relation=3kT. The information in the above equa-
relations. tions is then expressed in the form
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E=3kT+n,A. (149 0.6 | T
Since no energy is to be associated with the tranBits,the
thermodynamic internal energy per atom,NE=U. 051~
At a turning point, an atom in well 1 has probabiljia; of
transiting to well 2, and an atom in well 2 has probability 04l
of transiting to well 1. Since the time between turning points
is 7w, the rate per atom of transiting out of well 1 i =
= (7l w)u,, and the rate per atom of transiting out of well 2 & o3}
is R,=(m/w)u,. Then the time rates of change of the oc- <
cupation numbers; andn, are given by
02
h1: - n1R1+ n2R2,
. (15
n2=n1R1—n2R2, 01
or, eliminatingn,,
0
N1=Ry—Nn1(R1+Ry). (16)

T/ Ty
Following the results of Sec. Ill, we modgl; and u, with
VTF functions, each containing a single parameter in the FIG. 2. The equilibrium curves,(eq vs T/T,, for various

form of a critical temperature, so that T,/T, values.
Rlzzex —h for T=T, TIT,=—7. (19
w T_Tl '
n,(T) is obtained by simultaneous integration of EtP) for
Ry=0 for T<Ty, T, and Eq.(16) for h;. In the process, the system remains
(17 near equilibrium, andh,(T) follows just above the equilib-

R =zex;< —T2 ) for T=T rium curve, down to some temperature, and then the system
2w T-T, 2 passes out of equilibrium and freezes into a state with non-

zero n,. Representative curves are shown in Fig. 3, for
R,=0 for T<T,. T,/T,=0.98, and for a range of cooling rates as expressed
) ) ) by the dimensionless variabde-. If the temperature at which
Since well 1 lies at potential above well 2, we exp&Gt  he system passes out of equilibrium is the glass transition
<T,. But T, should be neafl,, so thatR, andR, slow temperatureT, then clearly our system exhibits a rate-

down together, to achieve glass transition behavior. dependenT,. The curves in Fig. 3 are similar to the curves
The complete evolution of the system is given by Edf)

for the internal energy, and E(L6) for the relaxation of; .

The independent variables afeandn;, and the model con- 06 55— |
tains the four parameterg;, T,, A, and w. We will scale
temperature witfT,, and will scale time with the vibrational
period 7=2m/w, so that the characteristic properties of the 051 Yr=1_/ —

model can be expressed in terms of the two parameters _10_1_/
T,/T, andA. ——102

0.4

Our first calculation is of the equilibrium curve fog(T).
The equilibrium condition ish;=0, and from Eq.(16) this L 10-3
gives

Ny

o

(%]
T
i

R2 ——104
ni(eg= RFR, (18) 02} .

This tells us than,(eq—3 asT—o, andn,(eq—0 asT , —107®
decreases td,. Between these limits, the shape of the curve 01 n
depends o, /T,, as shown in Fig. 2. Hence the indepen- ——10-6
dent atom model possesses a one-parameter family of equi- 0 1 |
librium curves. On each equilibrium curve, according to Eq. o ' 10 15 2.0
(14), the internal energy per atom is the thermal contribution T,
3kT, plus the potential term;A, with n; shown in Fig. 2.

Let us next calculaté,(T) under the condition that our FIG. 3. Curves of; vs T/T, for cooling from equilibrium at the
system is placed in equilibrium at a high temperature, and igonstant rates labeled by valuesyof T, /T, is 0.98, and the lower
then cooled at the constant ragedefined by envelope curve if; (eg).
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1.8L T T T !

For T<T,, no relaxation occurs, and for;<T<T,, the
relaxation isextremelyslow for the model parameters we are
studying. To keep the discussion simple, let us consiger
<T, which still allows forT above or belowly. We will
examine relaxation for isothermal and adiabatic processes.

In isothermal relaxation, the temperature is held constant,
so the rateR; andR,, given by Eq.(17), are each constant.
The relaxation equatioril6) can be written forén;=n,
—n,(eg, as

Ty/Ty

141

12~
T/ T,=099

5n1=—5n1(R1+ Rz) (21)
Hence the relaxation is exponential, with relaxation time
-1
5 (Ri+Rp) % _ _ _
o In adiabatic relaxation, the system is thermally isolated,
< so its energ)E is constant. From Eq.14), the conditionE

=0is

3kT=—Anh,. (22)

The relaxation is calculated by simultaneous integration of
log yt Egs.(16) and(22). The process is sensitive to the magnitude
of A in Eq. (22). The system relaxes to a point on the equi-
librium curve, so the functiong$n,;=n;—n;(eq, and 5T
=T-T(eq), relax to zero. The constant energy constraint is
SE(t)=0 for all t, and settingSE(t)=SE(0), Eq. (14)
yields

FIG. 4. The glass transition temperatdrg/ T, is shown in the
upper panel as a function of cooling raye and for several values
of T,/T,, andn; frozen in at zero temperature is shown in the
lower panel. The log function is base 10.

sketched by Ediger, Angell, and Nagéiig. 1 of Ref.[15]), ST(t)  dny(t)
to illustrate rate dependence Bf . In addition, the curves of 7
Fig. 3 exhibit a property described by Angell, Clarke, and 6T(0)  6ny(0)
Woodcock[29], in their discussion of computer experiments . . . .
on glass formation, namely, that the glass transition becomel_sJence there is only one independent relaxation function. Re-
sharper as the cooling rate is lowered. sults of our calculations are as follows.

For a given cooling rate, let us defig as the tempera- (@) If the initial state lies above the equilibrium curve in
ture at which ny(eq is equal to the zero-temperature Fig. 2, thenn; decreases toward equilibrium, and corre-

frozen-in value oin; (see Fig. 3 With this definition, T is spondinglyT increase{Eq. (22] As T in'creases, the rates
always abovd,. Our results are shown in Fig. 4, whegre it is R; andR, increase, causing the relaxation to proceed faster

seen thafl, decreases monotonically with the cooling rate,tha(rt‘))el)f(rftﬁgeimi:ysgtgrﬁg-s below the eauilibrium curve in
and the curve depends oh,/T,. The zero-temperature q

r - 15 ) Fig. 2, thenn; increases toward equilibrium, and corre-
frozen-in value o, varies froms; at infinite cooling rate, to spondinglyT decrease§Eq. (22)]. As T decreases, the rates

zero at zero cooling rate, and the crossover cooling rate i andR. decrease. causing the relaxation to proceed slower
strongly dependent offi, /T,. Again our results are shown 1 2 ) A 9 P
than exponentially in time.

in Fig. 4. In an experiment on a real material, one might not (©) In the limit as the system come near the equilibrium

be able to measurg, directly, but would presumably be able ; :
to measure the frozen-in potential energ per atomsee curve of Fig. 2, fr(_)m_ab_ove or below, the relaxation ap-
proaches exponential in time.

Eq. (14)]. The shapes of the curves in Fig. 4, fog and
n.(T=0) vs the cooling rate, are similar to those obtained
by Vollmayr, Kob, and Bindef30], from large scale com- V. SUMMARY OF CONCLUSIONS
puter simulations of binary Lennard-Jones systeftheir Supercooled liquid dynamics
Figs. 5 and 6, respectively o )

The final property we wish to discuss is relaxation toward " monatomic liquid dynamics theory, the system moves
equilibrium. Suppose our system is removed from equilib-2MONg & Iarge number of mt_ersectmg _nearly harmonic ran-
rium, to any point on the graph of Fig. 2, and is then allowegdom valleys in the many-particle potential surface. The same

(23

to relax. There are three relaxation regions: potential surface underlies the motion of atoms in the super-
cooled liquid. The quantum thermodynamic functions are
T<T,; R;=R,=0 given by Egs.(2)—(5), and contain the entropy constant

NkInw, expressing motion of the system among all the ran-

dom valleys. In reality, however, as temperature is lowered

T,<T<T,; R;>0R,=0, (20) below T,,, at some temperature the motion among random
valleys will begin to freeze out, and then the entropy is no

T,<T; R;>0R,>0. longer defined. We therefore have to develop a nonequilib-
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rium theory, based on the Hamiltonian motion of the systemonly a small window in the many-particle phase space, and
The motion is separated into two parts, and each part is idghe phase space sampled by the system decreases strongly as
alized to its essential physical character. The following detemperature decreases, causintp become essentially zero
scription emerges. at a finite temperature.

The vibrational motion is the motion of the system in any ~ Directly as a result of the slowing down of the transit rate
single random potential valley. This is assumed to be purelyVith decreasing temperature, the self diffusion and viscosity
harmonic, with anharmonicity serving to keep the vibrationa/®xhibit glass transition behavior. To further clarify the glass
motion in equilibrium. The system energy is entirely vibra- transition process, a}ddltlonall calculations are needed of the
tional, so the internal energy is the vibrational enefiggg. ~ Velocity autocorrelation function at<T,, and of¢ or 4 at
(7)], and temperature is defined through the equilibrium disvalues= 0.1.
tribution ny, [Eq. (5)]. -

A transit is the motion of the system in passing from one Thermal glass transition
valley to another. Transits are assumed to be instantaneous, To obtain a thermal glass transition in the independent
and energy and momentum conserving, so that their soletom model, the atom is allowed to move within two wells,
function is to move the system among the available valleyseach with frequencyw, but with well 1 lying higher than

There is no discontinuity in thermodynamic or transportwell 2. The transit probabilitieg.; out of well 1, andu, out
properties as the system is cooled throdgh However, as of well 2, are modeled with VTF functions having critical
temperature is decreased beldly,, the transit rate de- temperatured, andT,, respectively, withT;<T,. The ra-
creases, giving rise to a glass transition in the transport progio T1/T, becomes an important parameter of the model. Our
erties. Because all random valleys have the same potenti§flculations lead to the following conclusions.
parameters, for a monatomic system, the internal energy will In equilibrium, the occupation numbers arg=n,=; at
not show evidence of a glass transition. However for a binaryf ==, and well 1 gradually empties & decreases, until
system, for example, the random valleys will acquire a rang@1=0 atT=T,. The shape of the intervening equilibrium
of potential parameters, and now the slowing of the transigurve depends ofi; /T, (Fig. 2).

rate gives rise to a glass transition in the internal energy. ~ Upon cooling at a constant rate, from an equilibrium state
at high temperature, the system remains near equilibrium
Transport glass transition down to the glass transition temperatdig, then the system

) ) passes out of equilibrium and freezes into a state with non-
We want an elementary model incorporating the abovegrg T, decreases, and the glass transition becomes
physical properties, and for which we can calculate the NONzharper, as cooling rate decreageiy. 3). Curves ofT, vs
equilibrium evolution under any condition. The independentCOO"ng rate, and of the frozen-in value 1of vs coolinggrate,
atom model, originally developed to treat self diffusion in depend onT, /T, (Fig. 4. The shapes of these curves are

the liquid, serves this purpose. An atom moves through a S&mjjar 1o results of large-scale computer simulatiag].
of identical isotropic three-dimensional harmonic wells, each When the system is removed from equilibrium and al-

with frequencyw, and at each turning point the atom moves |, a4 to relax isothermally

forward into a new well with probability,, or moves back in  {jme \When the system is allowed to relax adiabatically, the

its old well with probability 1 .. The system is a collection g |axation is nonexponential in general, but approaches ex-
of such atoms, with the appropriate physical variables, suclonential as the system comes arbitrarily close to equilib-
as amplitudes and phases, being averaged over the colleg;mn,

tion. The independent atom model has been justified as a In.our view, though the independent atom model is a se-

leading approximation to the atomic motion, by averagingere jdealization of real systems, expressing the motion as a
out the fluctuations in the potential field “seen” by a single ¢ompination of vibrations and transits captures the underly-
atom in the liquid statg11]. _ ing nature of real glass transition behavior. In a simple and
_The independent atom model gives EgO) for the self  a¢,ra| manner, the independent atom model accounts for the
diffusion coefficientD, where&~ .. To apply the indepen-  ¢5,r main characteristics of the glass transition, as listed in

dent atom model to the supercooled liquid, we used our coMgec | plus further details actually found in large-scale com-
puter calculations for metallic sodium to fing(T) at T puter simulations.

=<T,,. The result is shown in Fig. 1, and leads to the follow-
ing conclusions.

&(T) is well fitted by the VTF function withT o= 121 K.
The same temperature dependence applies to the transit We are grateful for the collaboration of Bradford Clem-
probability «(T), supporting the view that transits are not ents, who has strongly influenced this research. The work
merely thermally activated, but are limited by correlationswas supported in part by the Department of Energy under
among the atoms involved in a transit. Thus a transit ha€ontract No. W-7405-ENG-36

the relaxation is exponential in
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